
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024 1011

Non-Clairvoyant Scheduling of Distributed Machine
Learning With Inter-Job and Intra-Job Parallelism on

Heterogeneous GPUs
Fahao Chen, Peng Li , Senior Member, IEEE, Celimuge Wu , Senior Member, IEEE,

and Song Guo , Fellow, IEEE

Abstract—Distributed machine learning (DML) has shown great
promise in accelerating model training on multiple GPUs. To
increase GPU utilization, a common practice is to let multiple
learning jobs share GPU clusters, where the most fundamental
and critical challenge is how to efficiently schedule these jobs on
GPUs. However, existing works about DML job scheduling are
constrained to settings with homogeneous GPUs. GPU heterogene-
ity is common in practice, but its influence on multiple DML job
scheduling has been seldom studied. Moreover, DML jobs have
internal structures that contain great parallelism potentials, which
have not yet been fully exploited in the heterogeneous computing
environment. In this paper, we propose Hare, a DML job scheduler
that exploits both inter-job and intra-job parallelism in a heteroge-
neous GPU cluster. Hare adopts a relaxed fixed-scale synchroniza-
tion scheme that allows independent tasks to be flexibly scheduled
within a training round. Given full knowledge of job arrival time
and sizes, we propose a fast heuristic algorithm to minimize the
average job completion time and derive its theoretical bound is
derived. Without prior knowledge of jobs, we propose an online al-
gorithm based on the Heterogeneity-aware Least-Attained Service
(HLAS) policy. We evaluate Hare using a small-scale testbed and a
trace-driven simulator. The results show that it can outperform the
state-of-the-art, achieving a performance improvement of about
2.94×.

Index Terms—Distributed machine learning, heterogeneous
GPUs, intra-job parallelism, online scheduling.

Manuscript received 5 January 2023; revised 16 April 2024; accepted 2 June
2024. Date of publication 14 June 2024; date of current version 6 December
2024. This work was supported in part by Japan Society for the Promotion of
Science (JSPS) KAKENHI under Grant 24K02932, in part by Japan Science
and Technology Agency (JST) PRESTO under Grant 23828673, in part by
ROIS NII Open Collaborative Research under Grant 24S0601, in part by
Key-Area Research and Development Program of Guangdong Province un-
der Grant 2021B0101400003, in part by Hong Kong RGC Research Impact
Fund under Grant R5060-19, in part by General Research Fund under Grant
152221/19E, Grant 152203/20E, and Grant 152244/21E, in part by the National
Natural Science Foundation of China under Grant 61872310, and in part
by Shenzhen Science and Technology Innovation Commission under Grant
JCYJ20200109142008673. Recommended for acceptance by M. Kandemir.
(Corresponding author: Peng Li.)

Fahao Chen and Peng Li are with the School of Computer Science and
Engineering, University of Aizu, Aizuwakamatsu 965-0006, Japan (e-mail:
d8232101@u-aizu.ac.jp; pengli@u-aizu.ac.jp).

Celimuge Wu is with the Meta-Networking Research Center, Univer-
sity of Electro-Communications, Chofu 182-8585, Japan (e-mail: celimuge@
uec.ac.jp).

Song Guo is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong, SAR, China
(e-mail: songguo@cse.ust.hk).

Digital Object Identifier 10.1109/TCC.2024.3414440

I. INTRODUCTION

D ISTRIBUTED machine learning (DML) has been widely
studied because it is a straightforward but effective way

to accelerate the training of complex models using Big Data. In
the paradigm of distributed machine learning (DML), a learning
job is divided into multiple tasks, which can run on multiple
GPUs in parallel. The Parameter Server (PS) [1] scheme has
been widely adopted to coordinate the training processes across
multiple GPUs.

A critical research challenge of DML is how to efficiently
schedule these jobs on GPUs, which is particularly concerned by
public or private cloud data centers that offer learning services
while desiring high hardware resource utilization. Therefore,
the learning job scheduling problem has attracted great research
attention, and various solutions [2], [3], [4] have been recently
proposed with different objectives. For instance, Gandiva [2]
has studied GPU sharing among several jobs to improve GPU
utilization. Pollux [3] considers the fairness of learning jobs, and
recent work [4] has exploited both intra-job and inter-job paral-
lelism and proposed an efficient DML job scheduling algorithm
to minimize the total job completion time.

Most of the existing works, however, are based on an assump-
tion that GPUs are homogeneous. In practice, hardware hetero-
geneity commonly exists in computing clusters. For example,
as the expansion of data centers, new GPUs are continuously
added and they should work with existing ones to maximize
resource utilization. The heterogeneity refers to the variety
and differences in the hardware configurations of computing
clusters. Specifically, the heterogeneity of GPUs indicates dif-
ferences in several features, such as architecture, computation
capacities (i.e., CUDA cores), memory size, bandwidth, and
others. Some recent works [5], [6], [7] have started to pay at-
tention to the influence of GPU-heterogeneity, which motivates
us to re-examine the DML job scheduling problem in such an
emerging heterogeneous computing environment.

Hardware heterogeneity brings new challenges as well as
opportunities to DML system design. We are excited to see the
success of several preliminary studies. For example, Gandivafair

[5] is designed to ensure the user-level fairness while maxi-
mizing the efficiency of heterogeneous GPU clusters. Gavel [7]
generalizes existing scheduling policies with consideration of
GPU heterogeneity. Allox [6] efficiently schedules ML jobs
in a heterogeneous cluster to improve the max-min fairness.

2168-7161 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4981-0496
https://orcid.org/0000-0001-6853-5878
https://orcid.org/0000-0001-9831-2202
mailto:d8232101@u-aizu.ac.jp
mailto:pengli@u-aizu.ac.jp
mailto:celimuge@uec.ac.jp
mailto:celimuge@uec.ac.jp
mailto:songguo@cse.ust.hk

1012 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

These recent works have extensively studied inter-job paral-
lelism in heterogeneous computing environment, but leaving
intra-job parallelism unexplored. They treat each DML job as a
unsplittable unit when making scheduling decisions. We are still
facing open questions: how to exploit both inter-job and intra-job
parallelism on heterogeneous GPUs? How much acceleration
can be obtained? And is there strong theoretical support for such
acceleration?

To fill this gap, we have proposed Hare [8], a sophisticated
DML job scheduler that exploits the parallelism at both intra-job
and inter-job levels while considering GPU heterogeneity. Hare
has three key techniques. First, it uses a relaxed scale-fixed
synchronization scheme to maximize scheduling flexibility. It
fixes the number of tasks in each round but relaxes resource
requirement for scheduling, so that we can maintain convergence
certainty while maximizing GPU utilization. Second, Hare en-
ables fast task switching by optimizing task initialization and
cleaning on GPUs, which has been identified as the major source
of switching overhead. The final one is a fast heuristic algorithm,
with theoretical performance guarantee, to minimize the average
job completion time for a set of DML jobs whose arrival time
and sizes are given.

Although Hare has made a great success, it needs the full
information of job sizes and arrival time to make good schedul-
ing decisions. However, this information is not always available
because DML jobs are submitted to the cluster at different
time, and it is hardly to predict when and what jobs will be
submitted in the future. In addition, many jobs use AutoML [9],
[10], [11] or early stopping [2], [12] techniques, and thus their
job sizes are unknown even though they have already arrived
and started to run. This phenomenon has been also reported
by [13], [14]. Although online job scheduling has been studied
by many existing works [4], [14], they cannot be directly ap-
plied here because of new challenges brought by Hare’s unique
scheduling manner. The relaxed scale-fixed synchronization
combined with heterogeneous GPUs could make almost all
existing online scheduling algorithms show prohibitively poor
performance.

In this paper, we propose a non-clairvoyant scheduling policy
to enhance Hare, so that it can exploit inter-job and intra-job
parallelism of online DML jobs. “Non-clairvoyant scheduling”
refers to the algorithm’s capability to make scheduling deci-
sions without complete knowledge of job sizes and arrival time.
Most of the existing schedulers are based on full information
of DML jobs, which is ideal and typically impractical. For
instance, Themis [15] requires jobs’ finish time to model the
finish-time fairness metric for scheduling. Our “non-clairvoyant
scheduling” is more applicable to real-time scheduling where
future job details are unknown. Our proposal is based on the
Least Attained Service (LAS) policy, which has been shown to
be effective in handling online jobs [16], [17]. Since existing
LAS policy is unaware of GPU heterogeneity, we propose a
customized version called Heterogeneity-aware Least-Attained
Service (HLAS), which redefines the “service” in Hare and uses
a GPU grouping scheme to wipe off the influence of hardware
heterogeneity.

We further relax the obliviousness assumption about job
sizes and examine the potential benefits of using prediction in
HLAS, which is motivated by some recent works on predicting

DML job sizes. However, existing works are mainly based on
fitting training loss curves, so they need to collect sufficient job
states before making accurate prediction. If we apply them in
HLAS, it is highly possible that we get wrong job sizes in the
first few rounds, which would seriously degrade the scheduling
performance. For example, if a small job is predicted as a long
one, it would misguide the scheduling algorithm to postpone
its execution. Therefore, we propose a conservative prediction
method that combines loss curve fitting techniques and historical
running records. Instead of aiming at predicting full job sizes, we
make a partial prediction about a limited number of additional
rounds. This conservative method can significantly increase pre-
diction accuracy, to minimize the possibility of making wrong
scheduling decisions.

We further propose an extended version of HLAS, called
HLAS-P, to use predicted job information for performance im-
provement. We define a new concept of virtual job size consisting
of two parts: the number of already scheduled rounds and that
of predicted rounds. We follow the HLAS to assign running
priorities according to virtual job sizes. However, for jobs with
the same priority, we make fine-grained scheduling decisions by
comparing their obtained “service” and predicted job sizes.

Compared to the previous version of Hare in [8], this paper
makes three new contributions, which are summarized as fol-
lows.
� We propose a non-clairvoyant scheduling policy called

HLAS for Hare, which can efficiently schedule DML jobs
without prior knowledge about job sizes and arrival time.
The HLAS method can outperform existing works with a
performance improvement of about 2.94×.

� We study to use predicted job sizes to improve HLAS. Due
to the unique scheduling features of HLAS, we propose a
conservative prediction method to make sure we can always
have accurate predicted result, instead of pursuing full job
size prediction.

� We propose HLAS-P as an enhancement of HLAS to use
predicted job sizes for further performance improvement.

The rest of this paper is organized as follows. We introduce the
background and motivation in Section II, followed by the system
overview in Section III. The non-clairvoyant scheduling policy
is presented in Section IV. We evaluate Hare in Section VI. The
related work is presented in Section VII. Finally, we conclude
this paper in Section VIII.

II. BACKGROUND AND MOTIVATION

In this section, we first give the background of distributed
machine learning (DML), and then present the unique characters
of DML jobs, which motivate us to design Hare.

A. Background

Distributed machine learning (DML) on GPUs has been
widely adopted to accelerate model training on large datasets.
The training goal is to minimize a loss function as follows:

L(w) = 1

|P|
∑
pi∈P

�(w, pi), (1)

where pi is a data point in the training dataset P . The loss func-
tion �(·) is, typically cross-entropy for the classification problem

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: NON-CLAIRVOYANT SCHEDULING OF DISTRIBUTED MACHINE LEARNING WITH INTER-JOB AND INTRA-JOB PARALLELISM ON 1013

Fig. 1. Training speedup of different jobs on different GPUs.

or squared error for the regression problem. The trainable model
parametersw are updated iteratively by using stochastic gradient
descent (SGD).

In each iteration, training workloads are shared by K GPUs,
which are also called workers. Each worker is assigned a fixed-
size mini-batch Bk ⊆ P and computes its local gradients gtk as:

gtk =
1

|Bk|
∑
pi∈Bk

∇�(wt, pi). (2)

After the local training, workers send their gradient updates to
a parameter server that creates a global model:

gt =
1

|K|
∑
k∈K

gtk; w
t+1 = wt − ηgt, (3)

where η is the learning rate. Then workers download the global
model and move to the next iteration of training. The training
process ends when a required number of rounds is achieved.
Typically, the parallelism scale |K|, the batch size |B|, and the
learning rate η are chosen by the user.

Typically, multiple DML jobs share GPU resources in a
cluster. With the soaring size of the DML jobs, a sophisticated
scheduler is needed to shorten the training time and improve
GPU utilization. Existing works [2], [4], [5], [7], [15], [18] have
made many efforts on scheduling algorithms design with an
assumption that GPUs in the cluster are homogeneous. However,
existing clusters usually accommodate different types of GPUs
with various specifications, which implies the inefficiency of
existing homogeneity-based schedulers.

B. Motivation

1) GPU Heterogeneity and Inter-Job Parallelism: We find
that different GPUs provide different performance speedups for
learning jobs, mainly because of the heterogeneity of model
(such as model architecture) and hardware. As shown in Fig. 1,
we use the training time per mini-batch on a K80 GPU as
the baseline and evaluate the speedup for other GPUs. For
example, “M60/K80” means the performance speedup on the

Fig. 2. The GPU utilization of training GraphSAGE model.

M60 GPU, compared to the training speed on a K80 GPU.
Training the ResNet50 model can be sped up by 2x on a T4
GPU, while with 7x significant speedup on a V100 GPU.
However, the graph learning model GraphSAGE shows the
heterogeneous performance on different GPUs. Specifically,
GraphSAGE can only be sped up by about 2x, even on the most
advanced V100 GPU. That is because the required FLOPS of
GraphSAGE are much smaller than other models. Moreover, the
data pre-processing speed is slower than the GPU computation
speed. The GPU spends more time to wait for input data,
resulting in low GPU utilization. As shown in Fig. 2, we find that
utilization of GPU is less than 30% when we train GraphSAGE
on a V100 GPU. There is a little improvement when training
GraphSAGE on a V100 GPU. Therefore, giving a high priority
for assigning V100 GPUs to the ResNet50 job is more efficient
since it shows a high-performance speedup than other jobs.

This empirical study gives us important hints about acceler-
ating learning jobs and increasing GPU utilization. On the other
hand, it throws challenges about how to schedule jobs on GPUs,
considering massive learning workloads and hardware resources
in modern data centers. Moreover, the intra-job parallelism,
which will presented in the following, further complicates this
problem.

2) GPU Heterogeneity and Intra-Job Parallelism: Each
DML job consists of multiple tasks, which are periodically
synchronized to share gradients, via a parameter server or ex-
changing gradients directly. Although a single advanced GPU
can provide a performance speedup for gradients computing,
the training speed of the whole DML jobs is constrained by
the synchronization. We train the ResNet152 on five different
distributed settings and show the epoch time in Fig. 3. We find
that mixing different GPUs is not always helpful. For example,
compared to a pure K80 cluster, adding faster T4 or V100 brings
no acceleration. That is because the gradient synchronization
impedes early completed GPUs to move to the next-round
training. There is much idle time on V100 GPUs when they waits
for the gradients update from K80 GPUs. This low efficiency can
be also reflected by GPU utilization as shown in Fig. 4, where
we can see that K80 is always busy while V100’s utilization is
rarely over 50%.

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

1014 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

Fig. 3. Epoch time of ResNet152 under different GPU combinations.

Fig. 4. GPU utilization of V100 and K80 when training ResNet152.

A straightforward idea to address this challenge is to schedule
parallel tasks belonging to the same job on similar GPUs. How-
ever, it is hardly to have such a perfect allocation in practice
because of limited GPU resources in the cluster. Since it is
inevitable to use heterogeneous GPUs for intra-job parallelism,
it is desired an algorithm that can well schedule fine-grained
tasks to reduce idle time.

3) Scale-Fixed Synchronization Versus Scale-Adaptive
Synchronization: Existing intra-job parallelism methods can
be categorized into two types, scale-fixed and scale-adaptive,
according to how many tasks are synchronized. Scale-fixed
methods, adopted by Tiresias [18] and Gandiva [2], fix the
number of synchronized tasks and always try to allocate the
same number of GPUs so that they can achieve full parallelism.
If the number of available GPUs is insufficient, all tasks need
to wait until required GPU number is satisfied. In contrast,
scale-adaptive methods [7], [15], [19], [20] dynamically change
the number of synchronized tasks according to available GPU
resources. Although these methods are flexible and tasks are
not blocked by strict resource requirement, we may need more
training epochs to achieve competitive accuracy of scale-fixed
methods. Moreover, it is hard to build theories to predict how
many epochs are needed. Due to this uncertainty, we do not use
scale-adaptive design in Hare.

Fig. 5. An example showing the benefit of relaxed scale-fixed synchronization
scheme adopted by Hare.

Fig. 6. System overview.

Motivated by the above analysis, we would like to follow
the scale-fixed idea but relax the parallelism requirement. An
example is shown in Fig. 5, where three tasks, i1, i2 and i3, are
running on 3 GPUs respectively. Now a new job n consisting of
3 tasks (i.e., synchronization scale is 3) comes. As illustrated
in Fig. 5(a), traditional scale-fixed methods start job n after
the completion of slowest task i3, when 3 GPUs are available.
We find that it is unnecessary to make 3 tasks strictly run in
parallel. Two tasks can run sequentially on GPU1, as shown in
Fig. 5(b), leading to earlier completion than traditional methods
while maintaining the same level of parallelism.

Implementing such a relaxed scale-fixed synchronization
method is not easy. We need to address challenge of changing
the task assignment and synchronization modules. It also affects
task scheduling algorithm design.

III. SYSTEM OVERVIEW OF HARE

A system overview of Hare is shown in Fig. 6, where Hare is
integrated into the existing PS-based distributed machine learn-
ing framework. Hare is not only a scheduling algorithm, but also
a set of modules that optimize training processes across GPUs.
It contains two main components: a logically centralized task
scheduler, and executors running on training machines. All data
are stored with HDFS [21]. It also collects hardware information,
e.g., GPU types, speed and memory, from the under-layer com-
puting infrastructure. These information first goes to a module
called profiler that trains a small piece of data to obtain expected
task execution time on different GPUs, which will be the input of
the task scheduling algorithm. We note that some jobs are usually
repeatedly submitted to the training platform. For example, some

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: NON-CLAIRVOYANT SCHEDULING OF DISTRIBUTED MACHINE LEARNING WITH INTER-JOB AND INTRA-JOB PARALLELISM ON 1015

models are periodically re-trained using latest collected datasets
to adapt to emerging cases, which is particularly common in
deep reinforcement learning. This observation motivates us to
accelerate the profiling by maintaining a database that stores
historical profiling results. We first search the database upon
receiving job information. If corresponding results can be found,
we skip profile training and directly feed searching results to the
scheduling algorithm. We then run the scheduling algorithm to
generate a task running sequence for each GPU. Finally, these
task sequences are sent to corresponding executors.

Each executor schedules tasks and loads checkpoints on GPU
according to their order given in the received task sequence.
When a task completes, it sends updated gradients to the corre-
sponding parameter server for aggregation. We follow the most
of training designs in traditional distributed machine learning
frameworks [15], [19], except the task switching mechanism.
In existing works, since each job has exclusive use of assigned
GPUs, several consecutive tasks on a GPU belongs to the same
job and they share the same GPU context, leading to low
switching overhead. In contrast, Hare allows GPU preemption
by alternatively running tasks of different jobs, which involves
frequent context switching with high overhead. To reduce the
task switching overhead, Hare introduces the fast task switching
mechanism [8], which deletes intermediate data of each layer
once its backward training completes. Thanks to the early task
cleaning, the released GPU memory can be used for pre-loading
data of the next task, so that it can start earlier.

Given a set of jobs with full information about sizes and arrival
time, we formulate a scheduling problem with the objective
of minimizing average job completion time. This problem is
NP-hard, which can be proved by reducing the well-known
SS13 problem [22]. A heuristic algorithm with theoretical per-
formance guarantee has been designed. The details of scheduling
with prior knowledge can be found in [8].

IV. NON-CLAIRVOYANT SCHEDULING ALGORITHM

Based on the relaxed scale-fixed synchronization and fast
task switching of Hare [8], we propose an online scheduling
algorithm in Section IV-C, called Heterogeneity-aware Least-
Attained Service (HLAS), to handle jobs without arrival time
and size information.

A. Problem Statement

We consider a heterogeneous GPU cluster similar with the
setting in [8], including basic GPU and job information, e.g.,
heterogeneous training time on different GPUs. Different from
[8], we do not require the size and arrival time of jobs must be
available. The set of GPUs is denoted byM. Some training jobs,
denoted by set N , are submitted to this cluster at different time.
The set N is an ordered set according to the job’s arrival time.
The arrival time of each job n ∈ N is denoted by an, which is
unknown before job arrival. Each job n ∈ N launches a set Dr

of training tasks that can run in parallel in every training round,
and each task is responsible for training a data batch. After local
training, all tasks synchronize their gradients via the PS scheme
to obtain an updated model for the next-round training.

Due to GPU heterogeneity, each task may have different
training time on different GPUs. Similarly, it may have different

TABLE I
NOTATIONS

synchronization time across GPUs because network condition
changes. Besides, we assume that the training time is longer than
the synchronization time. That is because GPUs are usually con-
nected by high-speed networks (e.g., NVLink and InfiniBand)
in data centers. Note that this is different from coarse-grained
job-level non-preemption assumed in existing works [2], [18],
[19], i.e., the whole DML job can not be preempted by other
DML jobs. We consider a fine-grained non-preemption setting
for task running, i.e., a task’s execution cannot be preempted
once it is scheduled on a GPU, where a task is responsible for
training a data batch and each job involves a set of training
tasks. Thanks to the fast task switching mechanism, there is tiny
task switching cost, which is less than 5% of task training time
according to experimental results. Therefore, we ignore the task
switching cost in the problem formulation for simplicity.

Different from [8], we make no assumption about the job
arrival time an and the number of training rounds needed by
each job, i.e., Rn is unknown. After each training round, we
know whether this job continues to run or not, which is similar
with the setting in [18]. In addition, we can collect some basic
information of jobs during processing, including start time and
time already be used for training. The job completion time of
a job is defined as the difference between its finished time and
arrival time. The goal of job scheduling algorithm is to minimize
the average job completion time (JCT). A list of notations is
shown in Table I.

B. Basic Idea

Given job sizes, it is well known that the Shortest-Remaining-
Time-First (SRTF) heuristic works well to minimize the average
JCT, even without job arrival information. However, SRTF can-
not be applied here because neither arrival time nor job sizes are
available. We cannot judge which job is the “shortest”. There-
fore, we turn to the Least-Attained Service (LAS) policy [23],
which approximates SRTF by always assigning higher schedul-
ing priorities to jobs that have received least services. LAS
and its variants have been widely applied for online scheduling
problems without job sizes [17], [24]. However, they cannot

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

1016 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

Fig. 7. CDF of job duration in trace.

Fig. 8. PDF of job duration in trace.

be directly used here because of unique challenges brought by
online DML scheduling.

The first challenge is about job size distribution. It has been
proved that LAS can approximate the SRTF heuristic when
job sizes obey a heavy-tailed distribution [17]. Therefore, it is
important to verify job distribution before applying LAS, so
that we can make sure LAS can fully play its power in the target
online scheduling problem. For example, in [17], [25], in order to
apply LAS for network flow scheduling in datacenters, authors
has shown that the sizes of network flows in datacenter exhibit a
heavy-tailed distribution. Similarly, we collect DML job traces
from Google cluster [26] and plot their CDF and PDF curves in
Figs. 7 and 8. We can see that many jobs are small and a few
large jobs occupy the most of GPU times, which fits the features
of heavy-tailed distribution.

The second challenge is about scheduling granularity. Many
existing works [18], [27] using LAS allow arbitrary preemption
of job execution and design fine-grained scheduling policy, to
pursue better approximation to SRTF. However, they cannot be
directly applied here because distinct characteristics of DML

Fig. 9. A toy example to show job scheduling results under different evaluation
of attained service.

jobs and some system constraints imposed by Hare. First, DML
jobs arrive in terms of rounds, consisting of a set of training
tasks. Only when all tasks of a round complete, we can finish
this round and update training models. Second, Hare does not
allow preemption of a task during its execution, to control the
task switching overhead. The above facts motivate us to set the
scheduling granularity at the level of a training round. Instead
of making scheduling decision for individual task, we assign its
tasks of the current rounds to GPUs once we decide to schedule
a job.

The final challenge is how to evaluate the amount of “attained
service”. A straightforward idea is to count the number of sched-
uled tasks belonging to each job. However, this is an inaccurate
estimation because tasks have different running time on GPUs.
An example is shown in Fig. 9. Suppose two jobs, JA and JB ,
arrive a cluster of 4 GPUs at the same time. The single-batch
training time on 4 different GPUs is shown in the table. For
example, processing one task for JA on GPU1 is 3 seconds. We
further assume that both jobs will run the same number of rounds.
In each round, they have 4 and 6 tasks, respectively. Of course,
the number of total training rounds is unknown when jobs arrive.
After each training round, we only know whether one additional
round is needed or not. It is unclear whether more rounds are
needed in the future. If we use the number of scheduled tasks
as “attained service”, Job A would have higher priority than B,
because it has less tasks. However, we find that Job B can run
faster on these GPUs, and the average JCT can be shorten if we
give B higher priority, as shown in Fig. 9(b).

The above example offers an important hint for us. The
“service” should include not only the number of tasks, but also
the running time. Formally, both spatial and temporal features of
DML jobs should be considered in scheduling algorithm design.
A similar observation has been also claimed by Tiresias [18].
However, Hare has two important differences from Tiresias.
First, Tiresias does not exploit the relaxed scale-fixed synchro-
nization. To run a round of tasks, it requires that the same number
of GPUs should be available. Second, Tiresias has proposed the
2DAS (Two-Dimensional Attained Service-Based Scheduler),
using the metric of Wntn (Wn is the number of assigned GPUs
and tn is GPU running time) to evaluate “attained service”. To
extend this idea for relaxed scale-fixed synchronization, we let
Rn denote the set of tasks already scheduled on GPUs, and
the metric becomes task-GPU time

∑
n∈Rn

tn. However, this
extension does not work because of the GPU heterogeneity. We
use the example in Fig. 10 to explain the reason, where two

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: NON-CLAIRVOYANT SCHEDULING OF DISTRIBUTED MACHINE LEARNING WITH INTER-JOB AND INTRA-JOB PARALLELISM ON 1017

Fig. 10. A toy example to show the uncertain attained services in heteroge-
neous computing environment.

Algorithm 1: Heterogeneity-Aware Least-Attained Service
Algorithm.

1: procedure HLASN ,M,Q
2: for t = 1, 2, . . ., T do
3: Add newly arrived job to N ;
4: xt

n,m = 0, ∀n ∈ N ,m ∈ M;
5: QUEUEUPDATE(Q);
6: for m ∈ M do
7: if m is idle then
8: E = JOBSCHEDULING(Q,m)
9: xt

n,m = 1, ∀n ∈ E;
10: end if
11: end for
12: end for
13: end procedure
14: Return: xt

n,m;

Algorithm 2: Queue Update Procedure in HLAS.
1: procedure QueueUpdateN ,Q
2: Update job size Hn(t), ∀n ∈ N ;
3: Put jobs to queues Q according to thresholds;
4: end procedure

jobs are the same as in Fig. 9. We assume not all GPUs are
available in the beginning. When GPUs 1 and 2 are idle, Job B’s
task-GPU time is 8 and it has higher priority than Job A whose
task-GPU time is 12. However, if GPUs 3 and 4 become idle,
the task-GPU time of JobsA andB is 7.2 and 9, respectively, and
Job A’s priority is higher than B. This example demonstrates
that job priorities depend on which GPUs are available, which
is uncertain in heterogeneous computing environment. These
observation motivates us to eliminate the influence of GPU
heterogeneity before applying LAS.

C. Heterogeneity-Aware Least-Attained Service (HLAS)

Motivated by the above findings, we propose a Heterogeneity-
aware Least-Attained Service (HLAS) policy for online job
scheduling in Hare. The proposed HLAS scheme has two stages:
a preparation stage that groups GPUs to wipe off hardware het-
erogeneity, and a run-time stage that schedules tasks according
to priorities. The workflow of HLAS is shown in Fig. 11 and
Algorithm 1. The output of our scheduling algorithm is the

Algorithm 3: Job Scheduling in HLAS.
1: procedure JobSchedulingQ,m
2: Execution task list E = ∅;
3: for Qi ∈ Q do
4: if Qi is not ∅ then
5: if there is a job n ∈ Qi is partially scheduled

then
6: Execute n in m;
7: else
8: n = FIFO(Qi);
9: Execute n in m;
10: end if
11: E.append(n);
12: end if
13: end for
14: end procedure
15: Return: E;

Fig. 11. HLAS workflow.

execution decision of tasks, i.e., xt
n,m. Specifically, xt

n,m = 1
indicates that task n should be executed on GPU m at time slot
t, otherwise xt

n,m = 0.
Preparation phase (GPU grouping): The objective of GPU

grouping is to let all groups exhibit a similar speed for each job.
Specifically, we measure the training speed sn,m ∝ 1

T c
n,m+T s

n,m

of each jobn running on each GPUm, and feed it to the following
optimization problem.

GPU_Grouping : min
z

max
n

(pmax
n − pmin

n),

∑
u∈U

zm,u = 1, ∀m ∈ M; (4)

pmax
n = max

u

{∑
m∈M

zm,usn,m

}
; (5)

pmin
n = min

u

{∑
m∈M

zm,usn,m

}
. (6)

In the above formulation, the binary variable zm,u determines
whether the GPU m should be assigned to the group u. We

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

1018 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

let pmax
n and pmin

n denote the job n’s maximum and minimum
speeds, respectively, among all groups. After solving this op-
timization problem, we get a GPU grouping scheme and the
average speed of all groups is denoted by sn. Based on the
average speed sn, we can calculate the average one-round time
costs for job n, denoted by T̄n.

Run-time phase (task scheduling): We define the job size of
n as: Hn(t) = Rr

n(t)T̄n, where Rr
n(t) is the number of rounds

that already run at current timestep t. In addition, we set up K
queues (Q1, Q2, . . .QK), where Q1 has the highest priority and
QK is with the lowest one. Each queue Qk is associated with
two thresholds, EL

k and EH
k , which represents the lowest and

highest job sizes that can be accommodated in this queue. Some
key operations are as follows.

1) When a job newly arrives, we always put it into the
highest-priority queue Q1.

2) When a GPU group is idle, we find a non-empty queue
with the highest priority. Then, we check jobs in this
queue to see whether there is a job is partially scheduled,
i.e., some tasks of its current round have been assigned
to a GPU group and the rest are still in the queue. If
yes, we assign the rest tasks of this job to the idle GPU
groups. Otherwise, we pick up jobs and schedule them in
a first-in-first-out (FIFO) manner. After the execution, we
calculate the accumulated job size and demote it to the
corresponding queue.

Algorithm analysis: The time complexity of QUEUEUPDATE

is O(|N | logK). Checking all queues involves the time com-
plexity of O(K) and finding a partially scheduled job has the
complexity of O(|Q|). Assuming that |Q| could be as large
as |N | in the worst case, the worst-case time complexity of
JOBSCHEDULING could be O(K|N |). For our proposed HLAS,
in each time slot, it updates the queue and then schedules jobs
for |M̃| GPU groups. Overall, the time complexity of HLAS is
O(|N | logK + |M̃|K|N |).

The space complexity of Algorithm 1 is analyzed as follows.
To run Algorithm 1, we need to trace the status of queues and
jobs. To store queues, the space complexity is proportional to
the total number of jobs, i.e., O(|N |). For the job size tracking,
we need to store each job’s size, adding an additional O(|N |)
space complexity. Overall, the space complexity of Algorithm 1
is O(|N |).

V. ENHANCEMENT OF HLAS WITH JOB SIZE PREDICTION

Some recent works [19], [28] have shown the possibility
of predicting machine learning job sizes. We find that such a
prediction can improve the performance of the HLAS algorithm.
A toy example is shown in Fig. 12. Suppose there are three
jobs running on a single GPU. They have different numbers
of training rounds, but each round contains only a single task
with similar running time. This simple setting can let us better
focus on studying the benefit of job size prediction. Without
job size information, we can obtain the scheduling result shown
in Fig. 12(a) by following the HLAS algorithm. We count the
running time of a single task as unit time and the average JCT is
6.7. If we know full information of job sizes, an optimal solution,
with average JCT of 5.3, can be generated by the shortest first
scheduling policy, as shown in Fig. 12(b). However, an accurate

Fig. 12. A toy example to show benefits of using additional prediction infor-
mation. Suppose there are three jobs that run 2, 3, and 4 rounds, respectively,
on a GPU. (a) The running sequence generated by HLAS. (b) The running
sequence with full knowledge of job sizes. (c) The running sequence with partial
knowledge that job J3 will run at least 3 rounds and the sizes of J1 and J2 are
unknown.

prediction of full job size information is almost impossible in
practice. Thus, we turn to see whether a partial prediction can
bring performance improvement. Suppose that there exists a
prediction method, which can give us a hint about job J3’s
size: J3 will run at least 3 rounds. With this information, we
can have a scheduling as shown in Fig. 12(c), whose average
job completion time is 5.7. In the beginning, we let J1 and J2
run first, because their sizes are unknown and we suppose they
are smaller than J3. Both jobs run by following the HLAS until
their sizes grows to 3. Since J1 and J2 have already completed,
we assign all GPU time to J3 until it finishes. This example
shows that job size prediction, even a partial prediction, can
help us to make better scheduling decisions to reduce average
JCT. Meanwhile, the amount of improvement depends on how
much information can be accurately predicted. In the following,
we will elaborate how we make the prediction and how to use
predicted job sizes in the scheduling algorithm.

A. Conservative Job Size Prediction

Machine learning job size prediction is not new. Peng
et al. [19] exploits the convergence trend of loss curves to predict
how many training rounds are needed. However, this method
requires to accumulate sufficient training losses to catch the
convergence trend. Experimental results show that this method
has very low accuracy in the first a few rounds. Moreover, this
method ignores the relationship among jobs. Consider a case
of using neural architecture search (NAS) technique, which
launches a group of training jobs running in parallel for compe-
tition. Even though we can make a good prediction for a job by
fitting its loss curve, this job may be soon killed because its loss
descending speed falls behind other competitors.

The above finding motivates us to design a prediction method
by jointly using job running states and historical information.
As shown in Fig. 13, we also use a loss fitting method to make
an initial prediction. Different from existing work aiming at
predicting full job sizes, our method is rather conservative and
it predicts whether a job will run additional α rounds. Then,
we adjust this initial prediction by comparing it with historical
records and states of other related jobs, if they exist. Specifically,
we search the historical records to see whether there are similar

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: NON-CLAIRVOYANT SCHEDULING OF DISTRIBUTED MACHINE LEARNING WITH INTER-JOB AND INTRA-JOB PARALLELISM ON 1019

Fig. 13. Conservative prediction process.

jobs (with the same names, or submitted by the same users) in
history. If yes, we update the prediction by averaging α and
practical rounds in history. After that, we continue to check
whether this job belongs to a NAS group. We make more
conservative prediction by reducing α if this job belongs to a
NAS group and it falls far behinds others.

B. HLAS-P Scheduling

We propose an HLAS-P scheduling algorithm to further
improve the performance by using prediction information. For
each job, we denote its expected job size as Hn(t) = (Rr

n(t) +
Rp

n(t))T̄n, whereRr
n(t) is the number of rounds that already run

and Rp
n(t) is the predicted additional number of rounds. Similar

with HLAS, we still maintain K queues {Q1, Q2, . . ., QK}, but
in each queue, we have two sub-queues q1k and q2k, where q1k
has higher priority than q2k. In addition, tasks in q1k are sorted
according to Rp

n(t) in a descending order. The job with larger
Rp

n(t) is scheduled first. The tasks in q2k are scheduled using a
FIFO policy.

When a job goes out of the prediction module, we put it
into corresponding queue Qk according to its expected job size
Rn(t). Then we check whether Rp

n(t) is zero. If yes, this job is
insert into sub-queue q2k. Otherwise, it is put into the queue q1k.
Note that when a job in the queue q1k is scheduled to run, the
value of Rp

i (t) decreases while Rr
n(t) grows, but keep the same

Rn(t). The value of Rn(t) changes only when this job belongs
to q2k.

VI. PERFORMANCE EVALUATION

In this section, we first introduce our experimental settings
and then present the results of the testbed and simulations.

A. Experimental Settings

We build a testbed consisting of 15 heterogeneous GPUs (8
V100 s, 4 T4 s, 1 K80, and 2 M60 s), which are deployed on
4 Amazon EC2 instances. All GPUs are equipped with PCIe-
3×16 (15.75 GB/s). Each instance is powered by NVIDIA driver
418.21, CUDA 10.1 and cuDNN 8.0.4, running Ubuntu 18.04
with Linux kernel version 5.4. All instances are connected via
the 25 Gbps Ethernet.

We have developed a trace-driven simulator to evaluate Hare
in large-scale settings. The simulator is built in Python, and
emulates the execution of DML jobs using the traces collected
from the testbed. The job arrival time is set according to the trace
in Google cluster [26].

We create some DML jobs based on 8 popular models across
domains of computer vision (CV), natural language processing

TABLE II
DEEP LEARNING JOBS USED IN OUR EXPERIMENTS.

(NLP), speech, and recognition (Rec.). The details of these mod-
els are shown in Table II. In the default setting, each type of jobs
accounts for 25% of the total workload. All jobs are implemented
in PyTorch 1.8.1, and they are trained using synchronous PS
scheme. Since the original datasets of SQuAD and WMT16 are
too large and the corresponding training would run for days, we
downscale them so that they can complete within hours.

We compare Hare with following schemes.
Gavel_FIFO: FIFO (First In First Out) is a default job

scheduling algorithm in many traditional batch job processing
systems [39]. It schedules jobs in an order according to their
arrival time. Gavel [7] customizes FIFO for heterogeneous GPUs
by assigning jobs to fastest available GPUs. If the number of idle
GPUs is insufficient, this job needs to wait until demanded GPUs
are available.

SRTF (Shortest Remaining Time First): SRTF has been widely
adopted to minimize total job completion time. It always sched-
ule jobs that could complete earlier.

Sched_Homo [4]: We denote a recent scheduling algo-
rithm [4] designed for homogeneous GPUs by Sched_Homo.
Similar to Hare, it aims to minimize the weighted ML job
completion time by exploiting both inter-job and intra-job par-
allelism. However, job-level preemption is not allowed.

Sched_Allox [6]: We consider the ML job scheduling algo-
rithm proposed by Allox [6]. The GPU heterogeneity has been
fully exploited, but it does not consider the intra-job parallelism.

B. Resutls on Testbed

We first study the benefits of fast task switching by showing
the average switching time of different jobs in Table III. A default
task switching scheme, without any optimization, needs more
than 3000 ms for all jobs. PipeSwitch can reduce the average
switching time to 12.57 ms for Bert_base and less for others.
The maximum switching time of Hare is no more than 6 ms.
The proportion of task switching time to the total task time
is also shown in the table. We can see that Hare constrains
the task switching overhead within 2% for most of models,
and the largest overhead under FastGCN is no more than 5%.
These results justify our assumption that task switching time is
negligible in the scheduling algorithm design.

The total weighted job completion time (JCT) of several
schemes running on the testbed and the simulator is shown in
Fig. 14. Compared with other schemes, Hare can reduce total
weighted JCT by 47.6% to 75.3%, significantly outperforming
other schemes. Fig. 15 shows the cumulative distributed function
(CDF) of JCT of all jobs. We can see that about 90.5% of jobs
can complete within 25 minutes by Hare, while Sched_Allox

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

1020 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

TABLE III
AVERAGE TASK SWITCHING TIME OF DIFFERENT JOBS

Fig. 14. The results in testbed.

Fig. 15. CDF of job completion time.

and Sched_Homo can complete only 66.7% and 56.5%, respec-
tively. That is because Allox misses the optimization chances
brought by intra-job parallelism, and Sched_Homo is GPU-
heterogeneity-oblivious, leading to low GPU utilization.

C. Simulation Results of Offline Scheduling

Large-scale experiments are conducted using the simulator.
As we have shown in Fig. 14, the maximum performance gap be-
tween the testbed and simulator is only 5%, which demonstrates
that the simulator can offer sufficient simulation accuracy. The
gap is mainly because the error in prediction of training time
and switching cost.

Fig. 16. Performance under different number of GPUs.

We study the influence of number of GPUs in Fig. 16. The
number of ML jobs is set to 200. The weighted JCT of all
schemes decreases as more GPUs are used. Hare always outper-
forms other schemes under all cases. Sched_Allox is slower than
Hare by about 2x, but it is still significantly faster than others,
thanks to its heterogeneity-aware design. Although Gavel_FIFO
schedules jobs with the consideration of heterogeneity, it still
has the largest weighted JCT since it has no optimization in
scheduling.

We then consider 160 GPUs and change the number of jobs
from 100 to 300 to see how it affects the performance. As shown
in Fig. 17, as the number of jobs increases, the total weighted
JCT grows under all schemes. Meanwhile, the performance gaps
between Hare and other schemes become bigger. For example,
Hare outperforms others by 54.6%–80.5% when processing 300
jobs. It demonstrates that Hare can use these GPUs in a more
efficient way, to minimize the total weighted JCT.

We study the influence of GPU heterogeneity in Fig. 18. We
consider 160 GPUs and 200 jobs. We set different heterogene-
ity levels by selecting a different combination of GPUs. For
the low heterogeneity level, we only choose V100 GPUs for
training. We select the combination of (V100×K80) GPUs as
the middle heterogeneity level while selecting the combination
of (V100×T4×K80×M60) GPUs as the high heterogeneity
level. We find the gaps between Hare and other schemes be-
come bigger as the increasing of heterogeneity level. The main
reason is the higher heterogeneity level results in lower re-
source utilization in heterogeneity-oblivious schemes. Although
Sched_Allox suffers a slight influence from the heterogeneity

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: NON-CLAIRVOYANT SCHEDULING OF DISTRIBUTED MACHINE LEARNING WITH INTER-JOB AND INTRA-JOB PARALLELISM ON 1021

Fig. 17. Performance under different number of jobs.

Fig. 18. Performance under different heterogeneity levels.

level, its performance still lags behind Hare by 2× since there
is no consideration of intra-job parallelism optimization.

We investigate how job type affects the performance by
changing their proportions. The results are shown in Fig. 19.
In the default setting, each type of jobs account for 25%. In each
experiment, we then increase one of them and keep others the
same. The x axis of Fig. 19 shows the ratio of different job types.
When we increase the proportion of NLP jobs, the total weighted
JCT of all schemes increases since NLP jobs involve heavier
training workloads (i.e., more training rounds and more training
time). On the other hand, all schemes have smaller weighted
JCT when more recognition jobs are added, because they have
less workloads. Although Hare is affected by the job proportion,
it always achieves the best performance due to the sophisticated
scheduling algorithm.

We change the speed of the network connecting GPUs and
study its influence in Fig. 20. The results are in alignment with
our intuition that faster networks can accelerate the ML training.
However, such acceleration is not linear with the network speed
since the training time becomes the main bottleneck as the
decreasing of the synchronization time. For example, Hare’s

Fig. 19. Performance under different fractions of jobs.

Fig. 20. Performance under different bandwidth.

weighted JCT decreases by only 31.2%, even though increase
the network speed from 10 Gbps to 25 Gbps.

Fig. 21 shows the performance under different batch sizes,
where B0 stands for the default batch size configuration. We
can see that batch size has no big influence to all schemes except
Sched_Homo. That is because larger batch size leads to longer
training time, and there is more GPU idle time in Sched_Homo.

D. Simulation Results of Online Scheduling

We conduct simulations of online scheduling using the
traces from [26]. We compare our online scheduling algorithm
HLAS with four other algorithms: FIFO, Sched_Homo [4],
Sched_Allox [6], and 2D-LAS. For Sched_Homo and
Sched_Allox algorithms, we use a unit job size to disable the
job size information. The other two algorithms, i.e., FIFO and
2D-LAS [18], do not need job size information, the same as
our HLAS. Overall, HLAS always outperforms others since
it can capture the online information by defining the attained
service as the job sizes while considering GPU heterogeneity.

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

1022 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

Fig. 21. Performance under different batch sizes.

Fig. 22. Performance under different number of GPUs.

The workloads and GPU types are the same with the previous
setting.

We first study the impact of the number of GPUs in the
online scenario, as shown in Fig. 22. We set the number of
jobs as 200 and increase the number of GPUs from 100 to
180. The results show that our online scheduling algorithm
can achieve significant performance benefits compared with
others. Specifically, our online scheduling algorithm reduce the
average JCT by about 2.04× compared with 2D-LAS. Although
2D-LAS can outperform than FIFO by scheduling jobs with
least attained services in high priorities, they define the attained
service without consideration of GPU heterogeneity.

We then study the impact of the number of jobs and show
the results in Fig. 23. We increase the number of jobs from
100 to 300 and fix the number of GPUs as 160. Similar to
the offline scenario, the average JCT grows as the number of
jobs increases. We can also find that our online scheduling
algorithm can always outperform than others. Specifically, our
online scheduling algorithm outperforms others by about 1.69×
and 1.1×, respectively. The gap between FIFO and our HLAS

Fig. 23. Performance under different number of jobs.

Fig. 24. Impact of the number of groups.

increases since there are more large jobs will be scheduled first
in FIFO, making a worse average JCT.

We then set the number of GPUs and jobs as 160 and 200,
respectively. As shown in Fig. 24, we can find the total JCT
decreases with more GPU groups. It is because that the more
GPU groups provides larger inter-job parallelism. However, we
also find that the average JCT increases with more GPU groups.
The reason is that it is hard to ensure homogeneity between
groups, leading more group idle time.

We further analyze the algorithm cost with different number
of jobs. We set the arrival time of all jobs as 0, which means
all jobs can be scheduled once at the start time slot. We set the
number of GPUs and groups as 160 and 40, respectively. The
results are shown in Fig. 25. Although the algorithm cost grows
when the number of jobs increases, the trend is sub-linear, which
means that our scheduling algorithm can handle a large number
of jobs.

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: NON-CLAIRVOYANT SCHEDULING OF DISTRIBUTED MACHINE LEARNING WITH INTER-JOB AND INTRA-JOB PARALLELISM ON 1023

Fig. 25. Algorithm costs with different number of jobs.

Fig. 26. The performance of HLAS-P with different number of GPUs.

Fig. 27. The performance of HLAS-P with different number of jobs.

We finally study the performance of HLAS-P. We compare the
total JCT of HLAS-P with three methods, i.e., FIFO, HLAS, and
HLAS-L. For the HLAS, we calculate virtual job sizes with only
attained services. In contrast, for HLAS-L, we add predicted job
size by the loss fitting technique [19]. The results are shown
in Figs. 26 and 27. We can find that HLAS-P method can
always outperform others, and achieves additional improvement
of 1.42×, compared to HLAS. The HLAS-L method provides
a trivial improvement compared with HLAS, which is caused
by the fitting errors. Specifically, at the first a few rounds, the
fitting model has not been well-tuned, and it will give wrong
prediction errors for DML jobs, which significantly degrades
the scheduling performance. In contrast, HLAS-P adopted in
Hare utilizes not only loss curves but also traces information,
which gives a more accurate prediction. Therefore, our HLAS-P
method can always outperform others. When the number of

GPU doubles, the performance cannot double as well. The key
reason is that DML jobs require synchronization at each training
round. This synchronization process ensures that all the updates
from different GPUs are aggregated to update the global model.
The total round training time is often limited by the slowest
(straggler) GPU in the cluster. Hence, even if the number of
GPUs doubles, the speedup in the completion time of each DML
job is not directly proportional due to this bottleneck.

VII. RELATED WORK

Distributed Machine Learning: Distributed machine learning
on GPUs has been widely adopted to accelerate model training
on large datasets. Typically, We can assign and synchronize
workloads on GPUs in two different ways, which are referred
to as model parallelism [40] and data parallelism [41]. In the
model parallelism, each GPU trains a partition of the model
with the entire dataset. In data parallelism, each GPU maintains
a complete model and trains it using a subset of data. The model
gradients are periodically synchronized across GPUs using All-
Reduce [33] or Parameter Server (PS) [42] scheme. In particular,
the PS scheme is popular due to its simplicity, and we also use it
in our work. Specifically, the training process contains multiple
rounds. In each round, training workloads are shared by multiple
GPUs, which are also called workers. Each worker computes its
local gradients by using mini-batch stochastic gradient descent
(SGD) method. Then they send gradients to the parameter server,
which updates the model for the next-round training.

Job scheduling for machine learning: Job scheduling, which
determines when and where each job should run, is the most
fundamental and critical issue for distributed machine learning.
Early studies follow the idea of traditional batch job scheduling
by treating each job as an unsplittable unit and schedule them
on different GPUs [39]. Later, some works have exploited the
intra-job parallelism, i.e., tasks in the same training round of a
job can run in parallel, which can significantly enhance learning
performance. Optimus [19] allocates resources to ML jobs by
learning a throughput model with respect to various resource
allocation. Pollux [3] studies different resource allocation for
ML jobs by observing the throughput and statistical efficiency
during training. Zhang et al. [4] design an online algorithm
that selects the amount of resources for each job to minimize
the total job completion time. Although the above works have
exploited both inter-job and intra-job parallelism, they consider
homogeneous GPUs and forbid GPU preemption during job
execution. More recently, some works [14], [28], [43] propose
multi-resource scheduling for DML jobs, which schedule not
only GPUs but also auxiliary resources, such as CPUs, memory,
and so on. These works also consider homogeneous GPUs and
are orthogonal to Hare.

Recently, GPU-heterogeneity becomes popular as the expan-
sion of data centers and it has attracted significant research atten-
tion. Gandivafair [5] proposes an automated trading mechanism
to support time-slicing resource sharing among different jobs
while improving the cluster efficiency. Gavel [7] develops a
heterogeneity-aware scheduler to generate different scheduling
policies for different kinds of jobs. However, Gandivafair and
Gavel schedule jobs based on given time slice length. Such a
coarse-grained scheduling manner leaves a large optimization

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

1024 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

space for performance improvement. Moreover, they ignore the
task switching cost. Allox [6] transforms the job scheduling
problem into a min-cost bipartite matching to provide dynamic
fair allocation, but it conducts job-level scheduling and ignores
the intra-job parallelism.

VIII. CONCLUSION

We present Hare, a system enabling efficient multiple DML
job scheduling on the heterogeneous GPU cluster. We propose
both offline and online task scheduling algorithms to minimize
the average job completion time while improving the GPU
resource utilization. For online task scheduling, our proposed
algorithm is based on the Heterogeneity-aware Least-Attained
Service (HLAS) policy and schedules DML jobs without any
knowledge of job sizes. In addition, we further enhance the
proposed online scheduling algorithm by introducing additional
prediction information. We find that even a part of prediction
knowledge can benefit the scheduling performance. We demon-
strate the performance of Hare through experiments on both the
small-scale testbed and the large-scale trace-driven simulator.
Hare can significantly outperform existing works.

REFERENCES

[1] M. Li et al., “Scaling distributed machine learning with the parameter
server,” in Proc. 11th USENIX Symp. Operating Syst. Des. Implementation,
2014, pp. 583–598.

[2] W. Xiao et al., “Gandiva: Introspective cluster scheduling for deep learn-
ing,” in Proc. 13th USENIX Symp. Operating Syst. Des. Implementation,
2018, pp. 595–610.

[3] A. Qiao et al., “Pollux: Co-adaptive cluster scheduling for goodput-
optimized deep learning,” in Proc. 15th USENIX Symp. Operating Syst.
Des. Implementation, 2021, pp. 1–18.

[4] Q. Zhang, R. Zhou, C. Wu, L. Jiao, and Z. Li, “Online scheduling of
heterogeneous distributed machine learning jobs,” in Proc. Proc. 21st Int.
Symp. Theory, Algorithmic Found. Protocol Des. Mobile Netw. Mobile
Comput., 2020, pp. 111–120.

[5] S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and S. Viswanatha,
“Balancing efficiency and fairness in heterogeneous GPU clusters for deep
learning,” in Proc. Proc. 15th Eur. Conf. Comput. Syst., 2020, pp. 1–16.

[6] T. N. Le, X. Sun, M. Chowdhury, and Z. Liu, “Allox: Compute allocation
in hybrid clusters,” in Proc. Proc. 15th Eur. Conf. Comput. Syst., 2020,
pp. 1–16.

[7] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and M. Za-
haria, “Heterogeneity-aware cluster scheduling policies for deep learning
workloads,” in Proc. 14th USENIX Symp. Operating Syst. Des. Implemen-
tation, 2020, pp. 481–498.

[8] F. Chen, P. Li, C. Wu, and S. Guo, “Hare: Exploiting inter-job and intra-job
parallelism of distributed machine learning on heterogeneous GPUs,” in
Proc. 31st Int. Symp. High- Perform. Parallel Distrib. Comput., 2022,
pp. 253–264.

[9] “Automl.” [Online]. Available: http://www.ml4aad.org/automl/
[10] M. Tan et al., “MnasNet: Platform-aware neural architecture search for

mobile,” in Proc. CVF Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 2815–2823.

[11] L. Yang et al., “Co-exploration of neural architectures and heterogeneous
asic accelerator designs targeting multiple tasks,” in Proc. 57th ACM/IEEE
Des. Automat. Conf., 2020, pp. 1–6.

[12] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “SLAQ: Quality-driven
scheduling for distributed machine learning,” in Proc. Symp. Cloud Com-
put., 2017, pp. 390–404.

[13] W. Gao, Z. Ye, P. Sun, Y. Wen, and T. Zhang, “Chronus: A novel deadline-
aware scheduler for deep learning training jobs,” in Proc. ACM Symp.
Cloud Comput., 2021, pp. 609–623.

[14] Y. Zhao, Y. Liu, Y. Peng, Y. Zhu, X. Liu, and X. Jin, “Multi-resource
interleaving for deep learning training,” in Proc. ACM SIGCOMM Conf.,
2022, pp. 428–440.

[15] K. Mahajan et al., “Themis: Fair and efficient GPU cluster scheduling,”
in Proc. 17th USENIX Symp. Networked Syst. Des. Implementation, 2020,
pp. 289–304.

[16] M. Nuyens and A. Wierman, “The foreground–background queue: A
survey,” Perform. Eval., vol. 65, no. 3/4, pp. 286–307, 2008.

[17] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior
knowledge,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 393–406, 2015.

[18] J. Gu et al., “Tiresias: A GPU cluster manager for distributed deep learn-
ing,” in Proc. 16th USENIX Symp. Networked Syst. Des. Implementation,
2019, pp. 485–500.

[19] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An efficient
dynamic resource scheduler for deep learning clusters,” in Proc. 13th Eur.
Conf. Comput. Syst., 2018, pp. 1–14.

[20] W. Xiao et al., “Antman: Dynamic scaling on GPU clusters for deep learn-
ing,” in Proc. 14th USENIX Symp. Operating Syst. Des. Implementation,
2020, pp. 533–548.

[21] “Apache hadoop,” 2021. [Online]. Available: http://hadoop.apache.org/
[22] M. R. Garey and D. S. Johnson, “Computers and intractability: A guide to

the theory of np-completeness,” J. Symbolic Log., vol. 48, no. 2, 1983.
[23] I. A. Rai, G. Urvoy-Keller, and E. W. Biersack, “Analysis of LAS

scheduling for job size distributions with high variance,” in Proc. ACM
SIGMETRICS Int. Conf. Meas. Model. Comput. Syst., 2003, pp. 218–228.

[24] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “{Information-
Agnostic} flow scheduling for commodity data centers,” in Proc. 12th
USENIX Symp. Networked Syst. Des. Implementation, 2015, pp. 455–468.

[25] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling with
varys,” in Proc. ACM Conf. SIGCOMM, 2014, pp. 443–454.

[26] “Google cluster traces,” 2019. [Online]. Available: http://github.com/
google/cluster-data

[27] A. Sultana, L. Chen, F. Xu, and X. Yuan, “E-Las: Design and analysis of
completion-time agnostic scheduling for distributed deep learning cluster,”
in Proc. 49th Int. Conf. Parallel Process., 2020, pp. 1–11.

[28] Q. Weng et al., “{MLaaS } in the wild: Workload analysis and scheduling
in {Large-Scale } heterogeneous {GPU} clusters,” in Proc. 19th USENIX
Symp. Networked Syst. Des. Implementation, 2022, pp. 945–960.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. 3rd Int. Conf. Learn. Representa-
tions, 2015, pp. 1–14. [Online]. Available: http://arxiv.org/abs/1409.1556

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[31] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[32] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th IEEE Int.
Conf. Comput. Vis., 2001, pp. 416–423.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, 2019,
pp. 4171–4186.

[34] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[35] A. Hannun et al., “Deep speech: Scaling up end-to-end speech recogni-
tion,” 2014, arXiv:1412.5567.

[36] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph convo-
lutional networks via importance sampling,” in Proc. 6th Int. Conf. Learn.
Representations, 2018, pp. 1–15. [Online]. Available: https://openreview.
net/forum?id=rytstxWAW

[37] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Neural Inf. Process. Syst., 2017,
pp. 1024–1034.

[38] Z. Bai, Z. Zhang, Y. Zhu, and X. Jin, “PipeSwitch: Fast pipelined context
switching for deep learning applications,” in Proc. 14th USENIX Symp.
Operating Syst. Des. Implementation, 2020, pp. 499–514.

[39] M. Zaharia et al., “Spark: Cluster computing with working sets,” USENIX
HotCloud, vol. 10, no. 10/10, 2010, Art. no. 95.

[40] D. Narayanan et al., “PipeDream: Generalized pipeline parallelism for dnn
training,” in Proc. 27th ACM Symp. Operating Syst. Princ., 2019, pp. 1–15.

[41] A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed deep
learning in tensorflow,” 2018, arXiv: 1802.05799.

[42] E. P. Xing et al., “Petuum: A new platform for distributed machine learning
on Big Data,” IEEE Trans. Big Data, vol. 1, no. 2, pp. 49–67, Jun. 2015.

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

http://www.ml4aad.org/automl/
http://hadoop.apache.org/
http://github.com/google/cluster-data
http://github.com/google/cluster-data
http://arxiv.org/abs/1409.1556
https://openreview.net/forum{?}id$=$rytstxWAW
https://openreview.net/forum{?}id$=$rytstxWAW

CHEN et al.: NON-CLAIRVOYANT SCHEDULING OF DISTRIBUTED MACHINE LEARNING WITH INTER-JOB AND INTRA-JOB PARALLELISM ON 1025

[43] J. Mohan, A. Phanishayee, J. Kulkarni, and V. Chidambaram, “Looking
beyond {GPUs } for { DNN} scheduling on {Multi-Tenant} clusters,” in
Proc. 16th USENIX Symp. Operating Syst. Des. Implementation, 2022,
pp. 579–596.

Fahao Chen is currently working toward the PhD
degree in the Graduate School of Computer Science
and Engineering, The University of Aizu, Japan. His
research interests mainly focus on cloud/edge com-
puting, graph learning, and distributed machine learn-
ing systems. He is awarded the Japan Society for the
Promotion of Science (JSPS) Research Fellowship for
Young Scientists.

Peng Li (Senior Member, IEEE) is currently a
senior associate professor in the University of
Aizu, Japan. His research interests mainly focus on
cloud/edge computing, Internet-of-Things, machine
learning systems, as well as related wired and wire-
less networking problems. He has published more
than 100 technical papers on prestigious journals and
conferences. He serves as the chair of SIG on Green
Computing and Data Processing in IEEE ComSoc
Green Communications and Computing Technical
Committee. He won the Best Paper Award of IEEE

TrustCom 2016. He supervised students to win the First Prize of IEEE ComSoc
Student Competition, in 2016. He is the editor of IEICE Transactions on
Communications, and IEEE Open Journal of the Computer Society.

Celimuge Wu (Senior Member, IEEE) received
the PhD degree from the University of Electro-
Communications, Tokyo, Japan, in 2010. He
is a professor with the University of Electro-
Communications. His research interests include Ve-
hicular Networks, Internet-of-Things, Edge Comput-
ing, and Application of Machine Learning in Wireless
Networking and Computing. He serves as an associate
editor of IEEE Transactions on Network Science and
Engineering, IEEE Transactions on Green Commu-
nications and Networking, and IEEE Open Journal

of the Computer Society. He is a recipient of the 2021 IEEE Communications
Society Outstanding Paper Award, 2021 IEEE Internet of Things Journal Best
Paper Award, IEEE Computer Society 2020 Best Paper Award, and IEEE
Computer Society 2019 Best Paper Award Runner-Up.

Song Guo (Fellow, IEEE) is a full professor with the
Department of Computer Science and Engineering,
The Hong Kong University of Science and Technol-
ogy. He also holds a Changjiang Chair Professorship
awarded by the Ministry of Education of China. His
research interests include Big Data, edge AI, mobile
computing, and distributed systems. With many im-
pactful papers published in top venues in these areas,
he has been recognized as a Highly Cited Researcher
(Web of Science) and received more than 12 Best
Paper Awards from IEEE/ACM conferences, journals

and technical committees. He is the editorin chief of IEEE Open Journal
of the Computer Society. He has served on IEEE Communications Society
Board of Governors, IEEE Computer Society Fellow Evaluation Committee,
and editorial board of a number of prestigious international journals, such as
IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions on
Cloud Computing, and IEEE Internet of Things Journal. He has also served as a
chair of organizing and technical committees of many international conferences.
He is an ACM Distinguished Member.

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on February 16,2025 at 06:31:36 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

